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We study a quantum small-world network with disorder and show that the system exhibits a delocalization
transition. A quantum algorithm is built up which simulates the evolution operator of the model in a polynomial
number of gates for an exponential number of vertices in the network. The total computational gain is shown
to depend on the parameters of the network and a larger than quadratic speedup can be reached. We also
investigate the robustness of the algorithm in presence of imperfections.
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Recently, much attention has been attracted to the study of
small-world networks �1�. They have been shown to describe
social and biological networks, Internet connections, airline
flights and other complex networks. In such systems, it is
possible to go from a given point to any other through only a
small number of links. Well-established classical models
have been proposed and analyzed by statistical methods. The
study of quantum networks with the same property has
started only recently, showing that these systems present in-
teresting features related to quantum transport, delocalization
�2,3� and fast diffusion �4�.

In parallel, the development of quantum information and
computation has become more and more important �5�. In
particular, the study of quantum computers has shown that
they can solve certain problems much more efficiently than
any classical device. Celebrated quantum algorithms have
been built for the factorization of large numbers with expo-
nential efficiency �6�, and for search in an unstructured da-
tabase with a quadratic speedup �7�. As first envisioned by
Feynman in the 1980s, the simulation of complex quantum
systems has also been shown to be more efficient on a quan-
tum computer �5�.

Here we study a quantum small-world network with dis-
order. We demonstrate the existence of a delocalization tran-
sition and investigate its dependence on disorder strength,
number of links and system size. We then build a quantum
algorithm to simulate such a network on a quantum com-
puter, and show that its efficiency significantly overcomes
classical computations. The algorithm is robust with respect
to errors.

We consider a circular graph with N=2nr vertices. Each
vertex is linked with its two nearest neighbors. To this graph,
pN shortcut links �connecting 2pN vertices� are added be-
tween random pairs of vertices �see an example in the inset
of Fig. 1� �8�. A quantized version of this system with on-site
disorder can be described by the N�N Hamiltonian matrix
H=H0+H1+H2. The first two terms give a one-dimensional
tight-binding Anderson model well-known in solid state
physics �9�. The diagonal matrix with entries �H0�ij =�i�i,j

describes on-site disorder; �i,j denote Kronecker symbols,
and �i are independent random numbers whose distribution is
a Gaussian with zero mean and width W �the Gaussian is
truncated at large values�. The matrix �H1�ij =V��i,j+1

+�i+1,j� describes the links between nearest neighbors, and

�H2�ij =�k=1
M V��i,ik

� j,jk
+�i,jk

� j,ik
� the shortcuts which make

the graph of small-world type, where �ik , jk� are the pairs of
vertices connected by random links, and V=1 is the hopping
matrix element.

When p=0, the system reduces to the one-dimensional
Anderson model, for which all states are known to be local-
ized. For small disorder, the localization length l varies as l
�1/W2 �9�. The additional presence of shortcut links may
induce delocalization, as is the case for certain other systems
involving sparse matrices �10�. This can be checked through
spectral statistics. Indeed, for localized systems, the eigen-
values are distributed according to the Poisson distribution,
provided the localization length is smaller than the system
size. On the contrary, in the delocalized phase the eigenval-
ues follow the Wigner-Dyson distribution corresponding to
random matrix theory, which generally characterizes quan-
tum chaotic systems and ergodic wavefunctions �9�. Our nu-
merical diagonalization of H at fixed p shows a transition
from Poisson to Wigner distribution as W decreases. A typi-
cal example is shown in Fig. 1 at p=1/32 and W=3 �local-

FIG. 1. Level spacing statistics for H at nr=14, p=1/32, for
three values of the disorder: W=0.5 �triangles�, 1.3 �empty squares�,
and 3 �full squares�. The solid curves correspond to the Poisson
distribution P�s�=e−s and to the Wigner-Dyson distribution P�s�
= ��s /2�e−�s2/4. Number of disorder realizations �position of short-
cut links and on-site disorder� is ND=10. Only the central half of
the eigenvalues is taken into account; s is in units of mean level
spacing. Inset: a realization of small-world network with N=32
and p=1/8.
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ized phase�, W=1.3 �intermediate statistics�, W=0.5 �delo-
calized phase�. This indicates that a delocalization transition
takes place in this system.

The localization properties of this quantum system can be
analyzed more precisely through the inverse participation ra-
tio �IPR�, defined by �=�i��i�2 /�i��i�4 for a wavefunction
��	=�i�i�i	. It gives the number of vertices supporting the
wavefunction ��=1 for a state localized on a single vertex,
and �=N for a state uniformly spread over N vertices�. In
Fig. 2 and Fig. 3, we display the time evolution of the IPR
for a wave packet initially localized on one vertex. For W
=0.5, the saturation value grows with N in the presence of
shortcut links, indicating that the wavefunction is no longer
localized. On the contrary, for W=3, the saturation value
remains close to its value in the absence of links and does
not change significantly with N, implying that the system is
still localized. In a more quantitative way, Fig. 4 presents the
saturation value of the IPR as a function of nr for different
values of p. The data confirm that at W=3 the system re-

mains localized. On the contrary, a clear delocalization is
visible in the presence of shortcut links for W=0.5. The data
are in good agreement with the law ��N�, with �
0.58 for
p=1/32 and �
0.84 for p=1/16 �the maximal value �=1
is obtained at p=1/2, data not shown�. This shows that the
delocalization transition for p=1/16 and p=1/32 takes place
approximately at W
1. In the limit of weak disorder W
	1, the transition is expected to take place at smaller values
of p�W2 �3�.

This system can be simulated on a quantum computer,
using O(�log N�2) quantum gates for a network of N=2nr

vertices, and nq=3nr+3 qubits. We start from an initial wave
packet encoded on the quantum registers. For example, the
initial one-vertex states used in Figs. 2–4 can be constructed
efficiently from a state localized in the ground state of
the quantum computer by at most nr single-qubit flips. Our
quantum algorithm performs the evolution of the wave
packet by slicing the propagator exp�iHt�, using the re-
lation ei�H0+H1+H2�
t=eiH0�
t/2�eiH1�
t/2�eiH2
teiH1�
t/2�eiH0�
t/2�

+O�
t3� for a short period of time 
t �see, e.g. �5,11��. Each
unitary operator is then simulated by quantum gates. We use
in particular rotations on the jth qubit by an angle � /2:
Rj���=exp�i�� j

z /2� ��z being a Pauli matrix�; controlled-not
operations CNOTi,j, that is bit-flip on the jth qubit conditioned
by the ith qubit; multicontrolled rotations Ci1,. . .,i
,�1,. . .,�
,j���,
that is rotations by an angle � on the jth qubit if and only if
the qubits ik takes the value �k� �0,1� for 1�k�
.

The transformation �i	→eiH0
t�i	 consists in multiplying
each basis state �i	 by a Gaussian random phase
exp�i�i
t�. For some integer ns, and �=W
t�3/ �nr+ns�,
let us choose randomly nr+ns angles
�k ,1�k�nr, and �k� ,1�k�ns, independent and uniformly
distributed in �−� /2 ,� /2�. Each �i
t is replaced by a
random variable ±�1±�2± ¯ ±�ns−1

� ±�ns
� , which for large

ns tends to a Gaussian random variable of width
W
t. This can be simulated by applying the operator
�k=ns

1 CNOTik,jk
�k=1

ns (Rjk
��k��CNOTik,jk

)�k=1
nr Rk��k� for some

value of ns. The ik and jk are chosen randomly between 0 and
nr−1. This step requires �3ns+nr� gates.

FIG. 2. �Color online� Evolution of the IPR � with time t, for
W=0.5 and p=1/32. Initial state is localized on one vertex. Curves
correspond �from bottom to top� to nr=8,10,12. Each curve is
shown as obtained by exact evolution �black lines�, with ND=80,
and by simulation by quantum gates �see text��green/gray lines�
with ND=100 and 
t=0.03. The arrows indicate the IPR at t
=2000 in the absence of shortcut links p=0 �exact evolution and
simulation by quantum gates yield the same result, data not shown�.
Time t is dimensionless �we set �=1�.

FIG. 3. �Color online� Same as Fig. 2 with W=3.

FIG. 4. IPR at time t=2000 as a function of nr for W=0.5 �full
symbols� and W=3 �empty symbols�, for p=1/16 �triangles�, p
=1/32 �squares�, and p=0 �circles�, with 20�ND�160. Initial
state is localized on one vertex. Straight lines correspond from top
to bottom to �=0.78N0.84, �=3.13N0.58, �=70.15, �=13.55, �
=7.91, �=5.69, with N=2nr. Logarithm is decimal.
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To perform the transformation �i	→eiH1
t�i	, we
first apply a quantum Fourier transform �QFT� to turn it into
the diagonal transformation �k	→exp(2i
t cos�2�k /N�)�k	.
Following �11�, we introduce the operator
R���̄�=HS1He−i��/2��1

z
HS−2He−i��/2��1

z
HS1 with Sm

=� j=2
nr C1,j��m /2 j−1�. It can be shown that e−i� cos �

=R�/2��̄�R�/2�−�̄�+O��3� for small �, with �̄=�−�a1 if
� /2�=0.a1a2 . . .an. The diagonal operator can thus be ap-
proximated by exp(2i
t cos�2�k /N�)= �R�/2��̄�R�/2�−�̄��L

+O�L�3�, with L an integer and � a small parameter chosen
such that L�=−2i
t. We then perform an inverse QFT. The
two QFT require nr�nr+1� gates, and the simulation of the
diagonal term requires 2L�5+3nr� gates.

The transformation �i	→eiH2
t�i	 acts on the subspace
spanned by �ik	 and �jk	, where ik and jk are linked by a
shortcut link, through the 2�2 submatrix ei
t�x

. Let us first
assume that p is of the form p=1/2�. For 
=�−1, the op-
erator Ci1,. . .,i
,�1,. . .,�
,j��� acts on the 2nr−
 basis vectors
whose qubits ik ,1�k�
, are respectively equal to �k: it
corresponds to the creation of 2nr−
−1=2nr−�= pN links. In
order to have less regular shortcut links, we first perform a
permutation on the vertices. To do this, we randomly choose
np integers ak and bk, for some integer np. It is better to take
the ak in �0.2N ,0.8N� and odd. Then we define the operators
Uk�i	= ��aki+bk�modN	 and the inverse operators Vk�i	
= �ak

−1�i−bk�modN	. A permutation can be simulated by the
sequence of gates P=�k=1

np UkCNOTik,jk
where the ik and jk are

chosen randomly. Application of the permutation P, followed
by a multicontrolled rotation Ci1,. . .,i
,�1,. . .,�
,j�
t� and P−1,
gives eiH2
t. The ik and �k in the controlled rotation are also
chosen randomly. In the general case, where p�1/2�, we
expand pN in base 2, such that pN=�2pk. Then we replace
the multicontrolled gate in the above description by a multi-
controlled gate for each pk appearing in the decomposition of
pN. This gives a sequence of gates Ci

1
�k�,. . .,i


k

�k�,�
1
�k�,. . .,�


k

�k�,j�k�

��
t�, where 
k=nr− pk−1, and the i
k�
�k�, j�k� and �

k�
�k� are

chosen randomly. Each operator Uk consists of a multiplica-
tion and an addition modulo N, which can be performed
using �2nr+3� ancilla qubits and O�nr

2� quantum gates �12�.
Each multicontrolled gate can be performed by O�nr

2� Tof-
foli, CNOT and single qubit gates �13�.

In total, the simulation of a network of N=2nr vertices for
one unit of time with fixed parameters 
t, ns, L and np can be
done by this method with O�nr

2� quantum operations and
3nr+3 qubits. Classically, a similar method can only be
implemented in O�N� operations at best. The quantum simu-
lation is therefore exponentially faster. This remains the case
even if the parameters ns and np are allowed to grow linearly
with nr to improve accuracy �the cost becomes O�nr

3� quan-
tum gates�.

The algorithm simulates the small-world network effi-
ciently but at the cost of several approximations. In order to
check its convergence and accuracy, we implemented it on a
�classical� computer. In Figs. 2 and 3, we display the result
of this computation for the parameters 
t=0.03, ns=30nr,
L=10, and np=3nr alongside the exact evolution, showing
that the algorithm is quite accurate for these values, and en-

ables to monitor precisely the delocalization transition with
good accuracy. The computation accuracy is not very sensi-
tive to fixed values of L and 
t: the total size N can be
changed by orders of magnitude �factor of 64 in our case�
without modification of these parameters.

To estimate the total complexity of the algorithm, we
should take into account the number of quantum measure-
ments and the number of iterations of the map. In order to
see the delocalization transition, it is sufficient to estimate
the spreading of the wave function, which can be done by a
constant number of quantum measurements �14�. Still, the
initial wave packet should have enough time to spread in
order for the localization length to be estimated. For the pa-
rameters of Fig. 2, we determined the time � needed for the
IPR to reach half of its maximal value. In the delocalized
phase for p�1/2, our numerical results give the scaling �
�N� with �
0.83�p=1/16� and �
0.69�p=1/32� �data
not shown�. This means that the total cost of the quantum
algorithm will scale as O�N��, compared to O�N�+1� for the
classical one �dropping logarithmic factors�. This implies a
better than quadratic gain for the quantum computation, but
no exponential gain. In contrast, for 1 /2� p�2 we find that
�
 log N �data not shown� �15�. In this case, the algorithm
may reach exponential efficiency and enable to perform pre-
cise studies of this percolationlike transition for very large
values of N. The exact algorithm complexity depends on the
properties of the phase transition near critical W value.

These results show that a perfect quantum computer gives
a significant gain in the simulation of quantum small-world
networks. However, realistic quantum computers are prone
to errors and imperfections. It is therefore important to test
the resilience of the algorithm to such effects. In Fig. 5 we
show the result of numerical simulations of the algorithm in
presence of errors. The error model chosen corresponds to

FIG. 5. Evolution of the IPR with time in the presence of static
errors, for nr=10, W=3 and p=1/32, with ND=100 �static errors
are the same for all realizations�. Initial state is localized on one
vertex, 
t=0.03. From top to bottom: �=10−4, 10−5, 10−6, 10−7, and
0. The arrows mark � at t=500 for W=0.5 and same other param-
eters, with from top to bottom �=10−5, 10−4, 10−6, 10−7, and 0. Inset
shows the three lowest curves on a different scale. Data from �
=10−7 are indistinguishable from �=0. Time t is dimensionless.
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static imperfections. These errors can exist independently of
the coupling with the external world, and have parametri-
cally larger effects than random noise in the gates �16�. Be-
tween each gate the system evolves through the additional
Hamiltonian HE=�i�i�i

z+�iJi�i
x�i+1

x , where the second sum
runs over nearest-neighbor qubit pairs on a circular chain.
The �i are randomly and uniformly distributed in the interval
�−� /2 ,� /2�. The couplings Ji represent the residual static
interaction between qubits and are chosen randomly and uni-
formly in the interval �−J ,J�. We suppose that each gate in
the quantum algorithm is instantaneous and separated by a
time �g during which HE acts. We take one single rescaled
parameter � which describes the amplitude of these static
errors, with �=��g=J�g. In the numerical simulations, to
save computational time we took the part of the algorithm
which generates the random shortcut links as exact, all other
parts being performed with errors. The results displayed in
Fig. 5 show that with moderate levels of imperfections

��
10−7� the simulation of the small-world network is very
close to the exact computation, in absence of any quantum
error correction.

In conclusion, we have shown that quantum disordered
small-world networks, which display a delocalization transi-
tion, can be simulated more efficiently on quantum comput-
ers than on classical ones. The algorithm can be performed
accurately on realistic few-qubit quantum computers in pres-
ence of moderate error strength. We think that our algorithm
can be generalized to simulate other types of quantum
graphs, such as, e.g., the ones studied in a quantum chaos
context in �17�.
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